
»TIC
EL LMIMV# 1 £«

JUL 1 7 1995

r

A Modal Analysis of Staged Computation

Rowan Davies and Frank Pfenning

May 1995

CMU-CS-95-145

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
OJ

Also published as FOX Memorandum CMU-CS-FOX-95-02

APPwr«4 tor public r*l*asft 1 Abstract

We show that a type system based on the intuitionistic modal logic S4 provides an expressive
framework for specifying and analyzing computation stages in the context of functional languages.
Our main technical result is a conservative embedding of Nielson & Nielson's two-level functional
language in our language Mini-MLa, which in addition to partial evaluation also supports multiple
computation stages, sharing of code across multiple stages, and run-time code generation.

DUg QUALITY INSPECTED 5

This research was sponsored by the Defense Advance Research Project Agency, CSTO, under the title "The Fox
Project: Advanced Development of Systems Software", ARPA Order No. 8313, issued by ESD/AVS under Contract
No. F19628-91-C-0168.

The views and conclusions contained in this document are those of the authors and should not be interpreted as
representing official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the
U.S. Government.

Accesion For

NTIS CRA&I
DTIC TAB
Unannounced
Justification

i
D
D

Dislibution f/

Availability Cedes

Dist

A-l

Avail and/or
Special

Keywords: Modal Logic, Two Level Languages, Partial Evaluation, Run Time Code Genera-
tion

Contents

1 Introduction 1

2 Modal Mini-ML: An Explicit Formulation 2
2.1 Syntax 2
2.2 Typing Rules 2
2.3 Operational Semantics 4
2.4 Example: The Power Function in Explicit Form 5
2.5 Implementation Issues 5

3 Modal Mini-ML: An Implicit Formulation 6
3.1 Syntax 6
3.2 Typing Rules 6
3.3 Examples in Implicit Form 8
3.4 Translation to Explicit Language 8

4 A Two-level Language 9
4.1 Syntax 10
4.2 Typing Rules 10
4.3 Translation to Implicit Modal Mini-ML 11
4.4 Equivalence of Binding Time Correctness and Modal Correctness 12

5 Examples 14
5.1 Ackermann's Function 14
5.2 Inner Products 15
5.3 Regular Expression Matching 16

6 Conclusion and Future Work 19

7 Acknowledgements 20

1 INTRODUCTION

1 Introduction

Dividing a computation into separate stages is a common informal technique in the derivation of
algorithms. For example, instead of matching a string against a regular expression we may first
compile a regular expression into a finite automaton and then execute the automaton on a given
string. Partial evaluation divides the computation into two stages based on the early availability
of some function arguments. Binding-time analysis determines which part of the computation may
be carried out in a first (static) phase, and which part remains to be done in a second (dynamic)
phase.

It often takes considerable ingenuity to write programs in such a way that they exhibit proper
binding-time separation, that is, that all computation pertaining to the statically available argu-
ments can in fact be carried out. From a programmer's point of view it is therefore desirable to
declare the expected binding-time separation and obtain constructive feedback when the computa-
tion may not be staged as expected. This suggests that the binding-time properties of a function
should be expressed in its types in a prescriptive type system, and that binding-time analysis should
be a form of type checking. The work on two-level functional languages [NN92] and some work on
partial evaluation (e.g. [GJ91, Hen91]) shows that this view is indeed possible and fruitful.

Up to now these type systems have been motivated algorithmically, that is, they are explicitly
designed to support partial evaluation. In this paper we show that they can also be motivated
logically, and that the proper logical system for expressing computation stages is the intuitionistic
variant of the modal logic S4. This observation immediately gives rise to a natural generalization
of standard binding-time analysis by allowing multiple computation stages, sharing of code across
multiple stages, and communication of binding-time information across module boundaries via
types.

One of our conclusions is that when we extend the Curry-Howard isomorphism between proofs
and programs from intuitionistic logic to the intuitionistic modal logic S4 we obtain a natural and
logical explanation of computation stages. Each world in the Kripke semantics of modal logic
corresponds to a stage in the computation. A term of type OA corresponds to code to be executed
in the current or a future stage of the computation. The modal restrictions imposed on a type of
the form OA guarantee that a function of type B -* OA can carry out all computation concerned
with its first argument while generating the residual code of type A.

The starting points for our investigation are the systems for the intuitionistic modal logic S4
in [BdP92, PW95] and the two-level A-calculus in [NN92]. We augment the former with recursion
to obtain Mini-MLD and then show that a two-level functional language may be fully and faithfully
embedded in Mini-MLa. This verifies that Mini-MLD is indeed a conservative extension of the
two-level language of [NN92] and thus correctly expresses standard binding-time separation. Fol-
lowing [PW95], we also sketch a compilation from Mini-MLD to a related language Mini-ML° whose
operational semantics embodies the separation of evaluation into multiple stages. The language
Mini-MLD contains constructs similar to the Lisp backquote, comma and eval, allowing an existing
program to be easily divided into stages, while the language Mini-ML° expresses the staging in a
form that may be more directly executed.

MODAL ANALYSIS OF STAGED COMPUTATION

2 Modal Mini-ML: An Explicit Formulation

This section presents Mini-ML°, a language that combines some elements of Mini-ML [CDDK86]
with a modal A-calculus for intuitionistic S4, A^D [BdP92, PW95]. The presentation of the modal
constructs differs from A^D in that we have a let form for de-constructing boxed values, and use
two contexts in the typing rules. This avoids the need for syntactic substitutions, but does not
alter the essential properties of the system.

For the sake of simplicity, we make the language explicitly typed, since we do not treat type
inference here. We have also chosen not to include polymorphism, because there are issues regarding
the interaction between type variables and computation stages that would distract from the main
point of this paper.

2.1 Syntax

Types A ::— nat
Terms E ::— x

Contexts T ::—

Ai -> A2 | Ai x A2 | DA
Xx:A. E\EiE2

fix x:A. E\{EU E2) \ME\ snd E
z\sE\ (case Ei of z =£• E2 I s x =>■ E3)
box E | let box x = Ei in E2

T,x:A

We use A, B for types, T, A for contexts, and x for variables assuming that any variable can
be declared at most once in a context. Bound variables may be renamed tacitly. We omit leading
•'s from contexts. We write [E'/x]E for the result of substituting E' for x in E, renaming bound
variables as necessary in order to avoid the capture of free variables in E'. The addition of types DA
to Mini-ML introduces two new term constructs: box E for introduction and let box x = E\ in E2

for elimination.

2.2 Typing Rules

Our typing rules for the Mini-ML fragment of the explicit language are completely standard. The
problem of typing the modal fragment is well understood; we present here a variant of known
systems [BdP92, PW95] inspired by zonal formulations of linear logic such as Girard's LU [Gir93].
In our formulation the typing judgment has two contexts. The first contains variables that may
appear anywhere, since they represent code. The second contains variables that are only available
in the current computation stage, including all ordinary Mini-ML variables. Thus our judgement

A;rK£:A

would correspond to DA, V h E* : A in A^D, where E* is an appropriate obvious translation of E.
Note that our system has the property that a valid term has a unique typing derivation.

2 MODAL MINI-ML: AN EXPLICIT FORMULATION

A-calculus Fragment.

x:A in T ,
tpeJvar

A;TPx : A

A;T,x:Ahe E:B A;T* EiiA-tB A;rP£2:A
tpeJam tpe_app

A;TP Xx:A. E : A-+B A; T P Ex E2 : B

Mini-ML Fragment.

A;T,x:Ahe E:A
 tpeJix
A;rheflxrA. E : A

A;rP£7i:Ai A;rP£2:A2
 tpe_pair

A;T^{EuE2):AlxA2

A-T\£E:A1xA2 A;rhe£:i1xA2
 tpeJst tpe_snd

A; T P fst E : Ax A; V P snd E : A2

A;rhe£:nat
- tpe_z tpe_s

A;rPz:nat " A;rPs£:nat

A;T Primat A;rP£2:A A; I>:nat P E3 : A
 tpe_case

A; T P (case Ei of z => E2 \ s x => E3) : A

Modal Fragment.

x:A in A

A; T P x : A
■ tpe_gvar

A;-P£:A A;rhe£i:aA A,x:A;T \-e E2 : B
■ tpe.box tpe_let_box

A; T P box E : DA A; T P let box a; = Ei in £2 : ß

Note that the rule tpcbox does not allow variables bound in the second context to appear in
the body of a box constructor, and only the rule tpe_let_box binds variables in the first context.

MODAL ANALYSIS OF STAGED COMPUTATION

2.3 Operational Semantics

The Mini-ML fragment of our system has a standard operational semantics. For the modal part,
we interpret box E as a value containing the frozen computation E which may be carried out in
a future stage. We evaluate let box x — E\ in E2 as a substitution of the residual code generated
by Ei for x in E2 and then evaluating E2. The residual code for E\ will then be evaluated during
the evaluation of E2 as necessary.

Note that if E:A and E ^-» V then V:A and V is unique. Mini-ML has this property, which is
easy to establish by induction over the structure of an evaluation. Also note that we have omitted
types in terms from the rules below, since they are irrelevant here.

Values V Xx.E\ (VUV2) |z|sV |box£.

A-calculus Fragment.

ev_lam
Ax. E^rXx.E

Ei^Xx. E[E2 ^ V2 [V2/x]E[-> V

ElE2^V
ev_app

Mini-ML Fragment.

[üxx.E/x]E^V

Ei -> Vi E2 ^ V2

evJix

ev-pair

E^{VUV2) E^(VUV2)
 ev_fst ev_snd
fst E «^ Vi snd E^tV2

z t-» z
■ev_z

E^V

sE^sV
■ev_s

ßi^z E2^V

(case Ei of z =>• E2 \ s x => E3) ^ V

Ei -4 s V{ [V[/x]E3 ^ V

(case Eiof z^ E2 \ s x => E3) ^ V

■ ev_case_z

ev_case_s

2 MODAL MINI-ML: AN EXPLICIT FORMULATION

Modal Fragment.

Ex M- box E[[E[/x]E2 ^ V2
ev_box ev_let_box

box E ^ box E let box x = Ex in E2 M- V2

Note that in the evaluation of well-typed terms, only terms inside a box constructor are ever
substituted into another box constructor.

2.4 Example: The Power Function in Explicit Form

We now show how we can define the power function in Mini-ML° in such a way that has type
nat —>• D(nat —)■ nat), assuming a closed term times:nat -y nat —>• nat (definable in the Mini-ML
fragment in the standard way).

power = fix p:nat —> D(nat -» nat).
An:nat. case n

of z =>• box (Aa;:nat. sz)
I s m=>- letbox q = p min box (Acc:nat. ü'mes x (qx))

The type nat —y D(nat —>■ nat) expresses the that function evaluates everything that depends on the
first argument of type nat (the exponent) and return residual code of type D(nat -¥ nat). Indeed,
we calculate with our operational semantics:

power zs box (Ax:nat. s z)
power (s Z)M- box (Ax:nat. times x ((Ax:nat. s z)x))

power (s (s z))^-> box (As:nat. times x ((Aa;:nat. times x ((Ax:nat. s z)x))x))

Modulo some trivial redices of variables for variables, this is the result we would expect of partial
evaluation.

2.5 Implementation Issues

The operational semantics of Mini-ML° may be implemented by a translation into pure Mini-ML,
mapping OA to unit —> A; box E to Aw:unit. E; and let box x = E\ in Ei to (Aa:':unit ->
A. [x'()/x]E2)Ei. It may then appear that the modal fragment of Mini-ML° is redundant. Note,
however, that the type unit —> A does not express any binding time properties, while DA does. It is
precisely this distinction which makes Mini-ML° interesting: the type checker will reject programs
which may execute correctly, but for which the desired binding-time separation is violated. Without
the modal operator, this property cannot be expressed and consequently not checked.

Another implementation method would be to interpret OA as a data-type representing code
that calculates a value of type A. This code could be either machine code, source code, or some
intermediate language. This would allow optimization after specialization, and could also support
an operation to output code as a separate program. The representation must support substitution
of one code fragment into another, as required by the ev_let_box rule. If the code is machine code,
this naturally leads to the idea of templates, as used in run-time code generation (see [KEH93]).
The deferred compilation approach in [LL94] would provide a more sophisticated implementation,
supporting fast run-time generation of optimized code.

MODAL ANALYSIS OF STAGED COMPUTATION

3 Modal Mini-ML: An Implicit Formulation

We now define an implicit version Mini-MLD of the explicit Mini-ML°, following [PW95] where
an implicit system \~*a was defined. This system is more reasonable as a programming language,
since we do not have to explicitly stage computation as required with let box x = E\ in E2. The
operational semantics of the new system is given in terms of a type-preserving compilation to the
explicit system. Our development differs from [PW95] in that we introduce a term constructor pop.
This means that typing derivations for valid terms are unique and the compilation from implicit
to explicit terms is deterministic, avoiding some unpleasant problems concerning coherence.

3.1 Syntax

Types A ::= nat Ai ->■ A2 | Ai x A2 | OA
Terms M X Xx:A. M | Mi M2

fix x:A. M | (Mi, M2) | fst M | snd M
z | s M | (case Mx of z =^> M2 1 s x => M3

box M | unbox M | pop M
Contexts r ::= T,x:A
Context Stacks * ::= *;T

All the categories, except context stacks are standard. The importance of context stacks will
be apparent when we present the typing rules.

3.2 Typing Rules

In this section we present typing rules for Mini-MLD using context stacks. The typing judgment
has the form

$;rPM:i term M has type A in local context T under stack $.

The context stack enables the distinguished use of variables depending on their relative position
with respect to the box operators that enclose the term being typed. Intuitively, each element T
of the context stack \P corresponds to a computation stage. The variables declared in T are the
ones whose values will be available during the corresponding evaluation phase. When we encounter
a term box M we enter a new evaluation stage, since M will be frozen during evaluation. In this
new phase, we are not allowed to refer to variables of the prior phases, since they may not be
available when M is unfrozen ("unboxed"). Thus, variables may only be looked up in the current
(innermost) context (rule tpLvar) which is initialized as empty when we enter the scope of a box
(rule tpLbox). However, code generated in the current or earlier stages may be used, which is
represented by the rules tpLunbox and tpLpop.

3 MODAL MINI-ML: AN IMPLICIT FORMULATION

A-calculus Fragment.

x:AmT . *;(r,d)PM:B
tpi_var ■ tpiJam

*;rPz:A $;rP'Ai:A.M:A->B

f;TPMiV:ß
tpi_app

Mini-ML Fragment.

f;r,i:APM:i
 tpLfix
f;rPflxx:AM:A

f;rPMi:ii $;rPM2:A2 . .
 tpi_pair

*;rP'(Mi,M2}:A1xA2

*;Tr» Af :AiX A2 *;TP M:AiXi2
 tpi_fst tpi_snd
*; T P fst M : Ai *; V P snd M : A2

$;rPM: nat
tpi_z ■ tpi_s

*;rPz:nat *;rPsM:nat

*;rPMi:nat #;rPM2:A *; I\ z:nat P M3 : A .
■ tpi_case

f;TP (case Mx of z =$> M2 I s x =» M3) : A

Modal Fragment.

*;r;-PM:A #;rPM:üA .
tpi_box tpLunbox

*;TP box M-.UA $;rPunboxM:i

$;APM:DA
 tpi_pop
$; A; TP pop M:üA

Note that it may be useful to consider the modal fragment of the implicit language to be a
statically typed analogue to the quoting mechanism in Lisp. Then box corresponds to backquote
and unbox (pop ■) to comma, unbox alone corresponds to eval, while pop alone corresponds
to quoting an expression generated with comma. Note however that our implementation via a
compilation to Mini-ML° is quite different from Lisp quoting.

MODAL ANALYSIS OF STAGED COMPUTATION

3.3 Examples in Implicit Form

We now show how we can define the power function in Mini-MLD in a simpler form than in
Mini-ML°, though still with type nat -> D(nat ->■ nat). We use unbox; M as syntactic sugar for
unbox (pop* M).

power = fix p:nat —> G(nat —)■ nat).
An:nat. case n

of z =4> box (Aa;:nat. s z)
| s m=$> box (Ax:nat. times x (unboxi (p m)x))

As another example, we show how to define a function of type nat —>■ Dnat that returns a
box 'ed copy of its argument:

Uflnat = fix /:nat -> Dnat. Ax:nat. case x of
z =£> box z

I si'^ box (s (unboxi (/ x')))

A similar term of type A-+ OA that returns a box 'ed copy of its argument exists exactly when
A is observable, i.e., contains no -K This justifies the inclusion of the lift primitive in two-level
languages such as in [GJ91], and in fact in a more realistic version of our language it could also be
included as a primitive.

3.4 Translation to Explicit Language

We do not define an operational semantics for Mini-MLD directly; instead we depend upon a
translation to Mini-ML°. This translation recursively extracts terms inside a pop constructor and
binds the result of their evaluation to new variables, bound with a let box outside the enclosing
box constructor. Variables thus bound occur exactly once.

The compilation from implicit to explicit terms is perhaps most easily understood if we restrict
pop to occur only immediately underneath an unbox or another pop. On the pure fragment
terms then follow the grammar

Terms M ::= x \ Xx:A. M\MXM2

| box M | unbox P
Pops P ::= M j pop P

The extension to the full language including recursion is tedious but trivial. Any term can be
transformed to one satisfying our restriction by replacing isolated occurrences of pop M by
box (unbox (pop (pop M))).

The compilation below keeps track of the context in which the term to be translated should be
placed (the k argument). This is necessary so that when we encounter an pop operator we can
find the matching box operator and insert a let box binding in the resulting explicit term. We
use the notation k — Ah. E for a context k with hole h. Filling the hole is written as an application
k(E'). This must be implemented as syntactic replacement since k is intended to capture variables

4 A TWO-LEVEL LANGUAGE

free in E'. First, the translation on terms, [M] k.

{x\k = k(x)
lM1M2jk = lMl}{khl.{M2}{Kh2.k{hlh2)))
{Xx.Mjk = {M](Ah.k(Xx.h))
[boxMjfc = [M](Afc.A(boxfc))
[unbox P]k = [P]k(Ah.h)

Nested pop operators are translated by traversing the current context k from the inside out until
a box operator is found. This cancels one pop operator and continues the translation. After
all pop operators have been removed (possibly none), we introduce a let box and continue
the translation. The b argument accumulates the body of the let box which will eventually be
introduced.

[pop P] (Ah. k{E!h))b = [pop P] k (Ah. Ex b(h))
[pop P] (Ah. k(h E2)) b = [pop P] k (Ah. b(h) E2)
[pop P] (Ah. k(Xx. h))b = [pop P]k (Ah. Xx.b(h))
[popP](A/».fc(boxA))& = [P]k (Ah. box b(h))
[pop P] (Ah. A;(let box x = h in E2)) b =

[pop P] k (Ah. let box x = b(h) in E2)
[pop P] (Ah. A;(let box x = E\ in h)) b =

[pop P] k (Ah. let box x = E\ in b(h))

[M] kb= [M] (Ah. A;(let box y = h in b(y))) where y is new

Since h must occur exactly once in Ah. E, the cases for [pop P]kb leave out only Ah. h. If
the original term is well-typed this case can never arise. An important invariant of [P] kb is that
Ah. k(b(h)) remains the same in every recursive call. At present we have not formally proven
that the translation above maps well-typed explicit terms to well-typed implicit terms. A related,
slightly more complicated translation has been proven correct in [PW95].

As an example of this translation, it maps the above definition of power to the previous explicit
one.

It is important to note that the operational semantics induced by the translation is very different
from the natural one defined directly on Mini-MLD. In [MM94] a simple reduction semantics for a
system similar to our implicit system is introduced which does not reflect binding time separation
in any way. It is instead used to prove a Church-Rosser theorem and strong normalization for a
pure modal A-calculus.

4 A Two-level Language

In this section we define Mini-ML2, a two-level functional language very close to the one described
in [NN92]. We then define a simple translation into Mini-MLD and prove that binding-time cor-
rectness in Mini-ML2 is equivalent to modal correctness of the translation in Mini-MLD.

Our language differs slightly from [NN92] in that we inject all run-time types into compile-time
types, instead of just function types. This follows [GJ91], where there is no such restriction. Also,
we find it convenient to divide the variables and contexts into run-time and compile-time, which
involves a small change in the "up" and "down" rules. All other differences to [NN92] are due to
minor differences between their underlying language and Mini-ML.

10 MODAL ANALYSIS OF STAGED COMPUTATION

4.1 Syntax

Run-time Types T ::= nat
Compile-time Types a ::= nat
Terms e ::= x

Run-time Contexts V ::=
Compile-time Contexts A ::=

TIZ±T2 I TiYjy

\X:T. e | ei@e2
fix X:T. e | (t\, e2) | fst e | snd e
z | s e | (case ei of z =4> e2 I s £ =>- 03)
Ay:o\ e | ei@e2
fix y:er. e | (ei, e2) | fst e | snd e
z I s e I (case ei of z =£> e2 I s y =>■ e^)
T,z:r
A,y:cr

4.2 Typing Rules

Run-time Typing

X:T in T
tpr_var

A; r, X\T2 V1 e:r
tprJam

A;Thr X:T

A; r F d : r2^r A; T F e2 : r2

A; T F XX:T2. e : T2=±T ' A; T F e:@e2 : r

A;r,z:rFe:r
tprJix

tpr_app

A;rFfixi:r.e :r

A;rFci:Ti A;rFe2:r2

A;TF (ei,e2) : n^
tpr_pair

A;TF e : TiXr2

A;rFfste:n
tprJst

A; L F e : ri_xr2

A;T F snd e : r2

tpr_snd

A;TFz :nat
tpr_z

A; T F e : nat

A; T F se : nat
tpr_s

A;rFei:nat A;rFe2:r A;T,^: nat F e3 : r

A; T F (case ei of z =£> e2 I s x =>■ 03) : r
tpr_case

A F e : r

A;rFe:r
down

4 A TWO-LEVEL LANGUAGE 11

Compile-time Typing

y:a in A
 tpc_var
A hc y : a

A, y:a2 F e : a A hc ex : a2=Ta A hc e2 : <r2
tpcJam = tpc_app

A hc Xy:a2. e : o"2=Fcr A hc ei@e2 : <r

A,y:a hc e : a
tpc_fix

A F fix y.a. e : a

A F ex : CTI A F e2 : <r2

A hc (ei, e2) : CTX x"cr2

tpc.pair

A hc e : o"iXcr2 A hc e : <TiXa2
 == tpc_fst tpc_snd
A K fst e : ax A p snd e : a2

A hc e : nat ,
tpc_z —— tpc_s

A F z : nat A F se : nat

A hc ei : nat A hc e2 : <r A, y : riit hc e3 : a

A hc (case ei of z =» e2 I s y =^> e3) : a

A; ■ F e : r

tpc_case

A hc e : r
up

Note that we remove run-time assumptions at the down rule, while in [NN92] this is done later
at the up rule. This change is justified since by the structure of their rules, such assumptions can
never be used in the compile-time deduction in between.

4.3 Translation to Implicit Modal Mini-ML

The translation to Mini-MLa is now very simple. We translate both run-time and compile-time
Mini-ML fragments directly, and insert □, box , unbox and pop to represent the changes between
phases. We define two mutually recursive functions to do this: || ■ || is the run-time translation and
| • | is the compile-time translation. We overload this notation between types and terms. We write
e and e to match any term whose top constructor matches the phase annotation.

Run-time Types

11 nat j | = nat
ki=h7"2|| = ||ri||-» ||r2|
kiXjal = rJ x ||r2||

12 MODAL ANALYSIS OF STAGED COMPUTATION

Compile-time Types

|nat|
|cri=Fcr2|
|<7l"X(T2|

W\

nat

ki| -> 1021
kil x \a2\
□ llrll

Run-time Terms

\\x\ = X

IIAa?:7". e| = Aa;:||r||. ||e||
||ei@e2| = INI INI

||fix £.:T. e| = fix 2J:||T||. ||e||

IK ei,e2 >| = (IMUMI)
||fst e| = fst ||e||
|snd e| = snd ||e||

||z| = z
IM = s I|e||

case ei of z =£- e? I s x => e?\ = case ||ei|| of z =£> ||e2|| I S X =» ||C3

m = unbox (pop |e|)

Compile-time Terms

|y| = y
\\y-.T. e\ = Ay:|r|. |e|
|ei@e2| = lei| M

|flx y:r. e| = fix y:|r|. |e|

|< ci,c2 >| = <|ci|.N>
|fst e| = fst |e|

|snd e| = snd |e|
|z| = z

|s e|
=

s |e|
case |ei| of z case ei of z =£- e2 I s y =?> ea|

|e| = box ||e||
|e2| I s y => |e3|

4.4 Equivalence of Binding Time Correctness and Modal Correctness

In this section we state our main theorem, which is that binding time correctness is equivalent
to modal correctness of the translation to Mini-MLG. We write V :: (J) if V is a derivation of
judgment J.

Theorem 1

1. I/||e|| = M then:

(a) ifVr :: (A;TF e : r) then we have Z\- :: (|A|; ||r|| P M : ||r||);

(b) ifVi :: (|A|; ||r|| P M : A) then we have Vr :: (|A|; ||r|| P e : r) with \\T\\ = A.

4 A TWO-LEVEL LANGUAGE 13

2. If\e\ = M then:

(a) ifVc :: (A P e : a) then we have V{ :: (|A| P M : \<r\);

(b) ifVi :: (|A| P M : A) then we have Vc :: (A P e : er) un'f/j |<r| = A.

Proof: By simultaneous induction on the definitions of ||e|| and |e|. Note that we can take advan-
tage of strong inversion properties, since we have exactly one typing rule for each term constructor
in Mini-MLD and Mini-ML2, plus the up and down rules to connect the F and F judgements.

We only show the two cases involving both definitions, since all others are easy. Note that at
the variables we need to rely on the phase annotations.

Case: ||e|| = unbox (pop |e|). To show part la we note that by inversion we have

v APe:r
down

A;rFe:r

then applying part 2a of the induction hypothesis to V'c to get V\ we get

V>
|A| P |e| : D||r||

v tpi_pop
|A|;||r||Ppop |e| :D||r||
 tpLunbox
|A|;||r||P unbox (pop |e|) : ||r||

Now, to show part lb we note that we can reverse the roles of the inversion and proof
construction above, and use part 2b of the induction hypothesis.

Case: |e| = box ||e|| To show part 2a we note that by inversion we have

v A; ■ F e : r
 up

A Pc e : T

then applying part la of the induction hypothesis to V'r to get V\ we get

Vl= |A|;.P||c||:||r||
 tpi_box
|A| P box ||e|| : D\\T\\

Now, to show part 2b we note that again we can reverse the roles of the inversion and proof
construction and use part lb of the induction hypothesis.

D

14 MODAL ANALYSIS OF STAGED COMPUTATION

By examining this proof we can verify that the translation of a two-level term can always
be type-checked only using the tpLunbox and tpLpop rules when tpLunbox immediately follows
tpLpop. This corresponds to a weaker modal logic, K, in which we drop the assumption in S4 that
the accessibility relation is reflexive and transitive [MM94].

In fact, we can define a language Mini-ML°- by replacing the unbox and pop constructors
with one equivalent to unboxi as in [MM94]. Then, Mini-ML^- closely models Mini-ML2, but
permits an arbitrary number of phases, each of which can only execute the code generated by
the immediately preceding one. This is similar to the idea of B-level languages in [NN92] (with
B linearly ordered), and in fact a ß-level version of Mini-ML would be exactly equivalent to
Mini-ML°-, by a natural extension of the two-level translation. It is also similar to the Multi-level
Generating Extensions of [GJ95].

It is interesting then to consider what the reflexitivity and transitivity assumptions model in
the context of staged computation. Essentially they allow us to execute generated code at any
future time, or immediately. It would be difficult to achieve the same in an extension of a two-level
language, since the separation between the levels is achieved by duplicating the term and type
constructors. Hence we consider Mini-MLD to be an appropriate language in which to study more
general forms of staged computation, including run-time code generation.

5 Examples

We now present some standard examples from partial evaluation to illustrate the expressiveness
of our language Mini-ML°. We use let x = E\ in E2 to introduce (non-polymorphic) top-level
definitions; it may be considered as syntactic sugar for (Xx:A. E2) E\.

5.1 Ackermann's Function

We now present a program for calculating Ackermann's function that specializes to the first argu-
ment. It is based on the following program:

let ackermann = fix acker:nat —>■ nat —> nat.
Am:nat. case m

of z =>- An:nat. sn
I s m'=> An:nat. case n

of z =>■ acker m' (s z)
| s n'=> (acker m' (acker m n'))

in ...

Now, if we attempt to directly insert the modal constructors to divide this program into two
stages, we get the following:

let ackermann = fix acker:nat —>■ D(nat —> nat).
Am:nat. case m

of z =>■ box (An:nat. sn)
I s m'=> box (An:nat. case n

of z =$■ (unboxi (acker m')) (s z)
| s n'=> (unbox! (acker m')) ((unboxi (acker m)) n'))

in ...

5 EXAMPLES 15

Unfortunately, when applied to the first argument, this function generally won't terminate.
This is a common problem in partial evaluation, and the usual solution is employ memoization
during specialization, which works for many programs. Here we will simply note that the problem
in this case is a recursive call to acker m while calculating acker m, which can be removed by
adding an additional fix as follows.

let ackermann = fix acker:nat -4 d(nat —> nat).
Am:nat. case m

of z => box (An:nat. sn)
I s m'=$- box (fix ackm. A?z:nat.

case n
of z =4> (unboxi (acker m')) (s z)

| s n'=> (unboxi (acker m')) (ackm n'))
in ...

This function will always terminate. The recursive applications appearing inside unbox. 1 con-
structors are evaluated when the first argument is given. The compilation of this function to
Mini-ML° makes this more explicit:

let ackermann — fix acker:nat —y D(nat —)■ nat).
Am:nat. case m

of z =>• box (An:nat. sn)
| s m'=$> let box / = acker m! in

let box g = acker m! in
box (fix ackm. An:nat.
case n

of z => / (s z)
I s n'=> g (ackm n'))

in ...

Notice that acker m' is unnecessarily calculated twice. This could be avoided if memoization
was employed during the compilation.

5.2 Inner Products

In [GJ95] the calculation of inner products is given as an example of a program with more than two
phases. We now show how this example can be coded in Mini-MLa. Note that we have assumed
a data type vector in the example, along with a function s«&:nat —> vector —> nat to access the
elements of a vector.

Then, the inner product example without staging is expressed in Mini-ML as follows:

let iprod = fix ip:r\at -> vector —> vector —>■ nat.
An:nat. case n

of z =^ Au:vector. Aw:vector. z
I s n'=> Au:vector. Aw:vector.

plus (times (sub n v) (sub n w)) (ip n' v w)
in...

16 MODAL ANALYSIS OF STAGED COMPUTATION

We add in □, box and unbox; to get a function with three computation stages. We assume a
function liftnat as defined earlier and a function s«6':nat -> □ (vector -> nat) which is a specializing
version of sub, that perhaps pre-computes some pointer arithmetic based on the array index. We
first define a staged version times' of times which avoids the multiplication in the specialization if
the first argument is zero. This will speed up application of iprod' to its third argument, particularly
in the case that the second argument is a sparse vector.

let times':0(nat -> D(nat ->■ nat)) =
box (Am:nat. case m

of z =>- box (An:nat. z)
I s m'=> box (Xn-.nat. times n (unboxi (Uftnat

m))))
in let iprod' = fix ip:nat -> D(vector ->■ D(vector -> nat)).

An:nat. case n
of z =4> box (Au:vector. box (Aw:vector. z))

I s n'=> box (Au:vector. box (Aw:vector.
plus (unbox! (unboxj times'(unboxi (sub' n) v))

(unbox2 (sub' n) w))
(unboxi (unboxi (ip n') v) w)))

in let iprodS : a (vector -* □ (vector -)■ nat)) = iprod' 3
in let iprodSa : □ (vector -> nat) = unbox iprodS [7, 0, 9]
in let iprodSb : □ (vector -» nat) = unbox iprodS [7, 8, 0]
in ...

The last four lines show how to execute the result of a specialization using unbox without pop
(corresponding to eval in Lisp). Also, the occurrence of unbox2 indicates code used at the third
stage but generated at the first. These two aspects could not be expressed within a multi-level
language.

Note the erasure of the unbox; and box constructors in iprod' leaves iprod, except that we
used a different version of multiplication. The operational semantics of the two programs is of
course quite different.

5.3 Regular Expression Matching

We now present a program for regular expression matching that specializes to a particular regular
expression. We use the full Standard ML language, augmented with our modal constructors. Our
program is based on the following non-specializing one, which makes use of a continuation function
that is called with the remaining input if the current matching succeeds.

datatype regexp

= Empty
I Plus of regexp * regexp

I Times of regexp * regexp

I Star of regexp

I Const of string

(* val accept' : regexp -> (string list -> bool) -> (string list -> bool) *)

5 EXAMPLES 17

fun accept' (Empty) k s = k s
I accept' (Plus(rl,r2)) k s = accept' rl k s orelse accept' r2 k s
I accept' (Times(rl,r2)) k s = accept' rl (fn s' => accept' r2 k s') s
I accept' (Star(r)) k s =

k s orelse
accept' r (fn s' => if s = s' then false else accept' (Star(r)) k s') s

I accept' (Const(str)) k (x::s) = (x = str) andalso k s
I accept' (Const(str)) k (nil) = false

(* val accept : regexp -> (string list -> bool) *)

fun accept r s = accept' r (fn nil => true I (x::l) => false) s

Note that there is a recursive call to accept' Star(r) in the case for accept' Star(r) which
we can transform using a local definition, similar to the fix introduced in the Ackermann function
example. This must be done so that specialization with respect to the regular expression terminates.
The resulting code for this case is:

I accept' (Star(r)) k s =
let fun ace' k s =

k s orelse
accept' r (fn s' => if s = s' then false else ace' k s') s

in
ace' k s

end

Then, we can add in modal constructors to get our staged program with the following types
(using $ here to represent □)

val accept2' : regexp -> $((string list -> bool) -> (string list -> bool))
val accept2 : regexp -> $(string list -> bool)

These types indicate that the required staging is achieved by the program. Inserting the modal con-
structors requires breaking up the function arguments, but is otherwise relatively straightforward.
We use unbox_l for unboxi = unbox (pop •).

fun accept2' (Empty) = box (fn k => fn s => k s)
I accept2' (Plus(rl,r2)) =

box (fn k => fn s =>
(unbox_l (accept2' rl)) k s
orelse (unbox_l (accept2' r2)) k s)

I accept2' (Times(rl,r2)) =
box (fn k => fn s =>

(unbox_l (accept2' rl)) (fn s' => (unbox_l (accept2' r2)) k s') s)
I accept2' (Star(r)) =

box (fn k => fn s =>
let fun acc2' k s =

18 MODAL ANALYSIS OF STAGED COMPUTATION

k s orelse

((unbox_l (accept2' r))

(fn s' => if s = s' then false else acc2' k s') s)

in

ace' k s

end)

I accept2' (Const(str)) =

box (fn k => (fn s =>
case s of (x::s') => (x = lift_string str) andalso k s'

I nil => false))

fun accept2 r = box (fn s => (unbox_l (accept2' r))
(fn s' => case s' of nil => true I (x::l) => false)
s)

We can now use our compilation to the explicit language Mini-ML° to get an equivalently
staged program without the modal operators. We can then further translate to a program in
pure Standard ML, which is staged in the same way, but without the modal annotations. It is
uneccessary to replace $A by unit -> A in this case, since box is only applied to values. We show
this program only to demonstrate the staging described by the the modal annotated program. The
program in Mini-ML° has the potential to be more efficient, since optimized code can be generated
by a sophisticated implementation.

(* val accept3' : regexp -> (string -> bool) -> (string -> bool) *)

fun accept3' (Empty) = (fn k => fn s => k s)
I accept3' (Plus(rl,r2)) =

let val al = accept3' rl
val a2 = accept3' r2

in
(fn k => fn s => al k s orelse a2 k s)

end
I accept3' (Times(rl,r2)) =

let val al = accept3' rl
val a2 = accept3' r2

in
(fn k => fn s => al (fn s' => a2 k s') s)

end
I accept3' (Star(rl)) =

let val al = accept3' rl
fun acc2 k s = k s orelse

al (fn s' => if s = s' then false else acc2 k s') s
in

(fn k => fn s => acc2 k s)
end

I accept3' (Const(str)) =

6 CONCLUSION AND FUTURE WORK 19

(fn k => (fn (x::s) => (x = str) andalso k s
I nil => false))

(* val accept3 : regexp -> (string -> bool) *)

fun accept3 r = accept3' r (fn nil => true I (x::l) => false)

6 Conclusion and Future Work

In this paper we have proposed a logical interpretation of binding times and staged computation
in terms of the intuitionistic modal logic S4. We first presented an explicit language Mini-MLe

(including recursion, natural numbers, and pairs) and its natural operational semantics. This
language is too verbose to be practical, so we continued by defining an implicit language Mini-ML
which, with some syntactic sugar, might serve as the core for an extension of a language with the
complexity of Standard ML. The operational semantics of Mini-MLD is given by a compilation
to Mini-ML°. It generalizes Nielson & Nielson's two-level functional language [NN92] which is
demonstrated by a conservative embedding theorem, the main technical result of this paper.

The two-level language we consider, Mini-ML2, is directly based on the one in [NN92], but has
a stricter binding-time correctness criterion than used, for example, in [GJ91]. Essentially, this
restriction may be traced to the fact that our underlying evaluation model applies only to closed
terms, while [GJ91] seems to require evaluation of terms with free variables. Glück and J0rgensen
[GJ95] present a multi-level binding-time analysis with the less strict binding-time correctness
criterion, along with practical motivations for multi-level partial evaluation, though they do not
treat higher order functions. A modal operator similar to the "next" operator from temporal logic
looks promising as a candidate to model this looser correctness criterion, but we have yet to develop
this line of research.

Our language Mini-ML° requires the insertion of the box, unbox and pop coercions into a
functional program. It may be preferable for these coercions to remain implicit, though in such a
language valid expressions no longer have unique or even principal types, thus raising coherence
problems. We intend to study a language in which the modal types are considered refinements of
the usual Mini-ML types, using intersections to express principal types (see [FP91] for analogous
non-modal refinement types). Refinement type inference for this language would be a form of
generalized, polyvariant binding-time analysis. Compilation would be type-directed, generating
different versions of functions appropriate for different stagings of computation. The programmer
would control this process through refinement type constraints imposed upon functions by type
annotations. Type inference in such a language would need to depend strongly on subtyping via
implicit coercions between refinement types.

Our operational semantics is also rather naive from a partial evaluation point of view. In
particular, we do not memoize during specialization. A memoizing semantics would be desirable
for a serious implementation, and would require some restrictions on side-effects. See [BW93] for
a description of a serious partial evaluator for Standard ML, which in part inspired this work.

This paper does not treat polymorphism, though it seems that it should not cause any problems.
We expect our type system to interact very well with ML's module system. In fact, part of
our motivation was to provide the programmer with means to specify staging (= binding time)
information in a signature and thus propagate it beyond module boundaries.

\ •»

20 MODAL ANALYSIS OF STAGED COMPUTATION

Our approach provides a general logically motivated framework for staged computation that
includes aspects of both partial evaluation and run-time code generation. As such it should allow
efficient code to be generated within a more declarative style of programming, and provides an
automatic check that the intended staging is achieved. We have implemented a simple version of
Mini-MLD in the logic programming language Elf [Pfe91]. To date we have only experimented with
small examples, but plan to carry out more realistic experiments in the near future.

7 Acknowledgements

We gratefully acknowledge discussions with Lars Birkedal, Olivier Danvy, Joelle Despeyroux, An-
drzej Filinski, Karoline Malmkjaer, Greg Morrisett, Morten Welinder, and Hao-Chi Wong regarding
the subject of this paper.

References

[BdP92] Gavin Bierman and Valeria de Paiva. Intuitionistic necessity revisited. In Proceedings
of the Logic at Work Conference, Amsterdam, Holland, December 1992.

[BW93] Lars Birkedal and Morten Welinder. Partial evaluation of Standard ML. Technical
Report DIKU-report 93/22, DIKU, Department of Computer Science, University of
Copenhagen, October 1993.

[CDDK86] Dominique Clement, Joelle Despeyroux, Thierry Despeyroux, and Gilles Kahn. A
simple applicative language: Mini-ML. In Proceedings of the 1986 Conference on LISP
and Functional Programming, pages 13-27. ACM Press, 1986.

[FP91] Tim Freeman and Frank Pfenning. Refinement types for ML. In Proceedings of the
SIGPLAN '91 Symposium on Language Design and Implementation, Toronto, Ontario,
pages 268-277. ACM Press, June 1991.

[Gir93] Jean-Yves Girard. On the unity of logic. Annals of Pure and Applied Logic, 59:201-217,
1993.

[GJ91] Carsten Gomard and Neil Jones. A partial evaluator for the untyped lambda-calculus.
Journal of Functional Programming, l(l):21-69, January 1991.

[GJ95] . Robert Glück and Jesper J0rgensen. Efficient multi-level generating extensions. Un-
published Manuscript, 1995.

[Hen91] Fritz Henglein. Efficient type inference for higher-order binding-time analysis. In
J. Hughes, editor, Functional Programming Languages and Computer Architecture, 5th
ACM Conference, volume 523 of Lecture Notes in Computer Science, pages 448-472.
Springer, Berlin, Heidelberg, New York, 1991.

[KEH93] David Keppel, Susan J. Eggers, and Robert R. Henry. A case for runtime code genera-
tion. Technical Report TR 93-11-02, Department of Computer Science and Engineering,
University of Washington, November 1993.

i*

REFERENCES 21

[LL94] Mark Leone and Peter Lee. Deferred compilation: The automation of run-time code
generation. In Proceedings of the Workshop on Partial Evaluation and Semantics-based
Program Manipulation (PEPM'94), Orlando, June 1994. An earlier version appears
as Carnegie Mellon School of Computer Science Technical Report CMU-CS-93-225,
November 1993.

[MM94] Simone Martini and Andrea Masini. A computational interpretation of modal proofs. In
H. Wansing, editor, Proof theory of Modal Logics. Kluwer, 1994. Workshop proceedings,
To appear.

[NN92] Flemming Nielson and Hanne Riis Nielson. Two-Level Functional Languages. Cam-
bridge University Press, 1992.

[Pfe91] Frank Pfenning. Logic programming in the LF logical framework. In Gerard Huet and
Gordon Plotkin, editors, Logical Frameworks, pages 149-181. Cambridge University
Press, 1991.

[PW95] Frank Pfenning and Hao-Chi Wong. On a modal A-calculus for S4. In S. Brookes and
M. Main, editors, Proceedings of the Eleventh Conference on Mathematical Foundations
of Programming Sematics, New Orleans, Louisiana, March 1995. To appear in Electronic
Notes in Theoretical Computer Science, Volume 1, Elsevier.

